HORNSBY GIRLS HIGH SCHOOL

Mathematics Extension 1

Year 12 Higher School Certificate

Trial Examination Term 3 2020

ST	UDENT N	UMBER:						
STUDENT NA	ME:			r	FEACHER 1	NAME:		
General		ling time – 10) minutes					
Instructions:	• Work	ting time – 2 l	hours					
	 Write 	using black	pen					
	 Calcu 	ulators appro	ved by NES	SA may be	used			
	• A refe	 A reference sheet is provided at the back of this paper 						
	• In Qu	iestions 11–1	4, show rel	evant math	nematical re	asoning		
	and/	or calculation	IS					
Total Marks:	Sectio	on I – 10 mar	ks (pages 2	2–6)				
70	 Atten 	Attempt Questions 1–10						
	• Allow	/ about 15 mi	nutes for th	is section				
	Sectio	on II – 60 mai	r ks (pages	7–12)				
	 Atten 	Attempt Questions 11–14						
	 Start 	 Start each question in a new writing booklet 						
	 Write 	your studen	t number or	n every writ	ing booklet			
	• Allow	/ about 1 hou	r and 45 mi	nutes for tl	nis section			
Q	uestion	1-10	11	12	13	14	Total	
	Total	/10	/15	/15	/15	/15	/70	
		/10	/15	/15	/15	/15	//0	

This assessment task constitutes 30% of the Higher School Certificate Course School Assessment

BLANK PAGE

Section I

10 marks Attempt Questions 1–10 Allow about 15 minutes for this section Use the multiple-choice answer sheet for Questions 1–10.

1. Let $P(x) = x^2 + bx + c$ where b and c are constants. The zeros of P(x) are α and $\alpha + 1$.

What are the correct expressions for *b* and *c* in terms of α ?

- (A) $b = -(2\alpha + 1)$ and $c = \alpha^2 + \alpha$
- (B) $b = 2\alpha + 1$ and $c = \alpha^2 + \alpha$
- (C) $b = \alpha^2 + \alpha$ and $c = -(2\alpha + 1)$
- (D) $b = \alpha^2 + \alpha$ and $c = 2\alpha + 1$
- 2. What is the derivative of $\tan^{-1}(2x-1)$?
 - $(A) \quad \frac{1}{4x^2 4x + 2}$
 - (B) $\frac{2x-1}{2x^2-2x+1}$

(C)
$$\frac{2}{2x^2 - 2x + 1}$$

$$(D) \quad \frac{1}{2x^2 - 2x + 1}$$

- 3. 80 students are allocated at random into different study groups. Determine the number of groups required so that **at least one group** has **9 or more** students.
 - (A) 11
 - (B) 10
 - (C) 9
 - (D) 8

4. Which of the following expressions is equal to $\cos x + \sin x$?

(A)
$$\sqrt{2}\sin\left(x+\frac{\pi}{4}\right)$$

(B)
$$2\sin\left(x+\frac{\pi}{4}\right)$$

(C)
$$\sqrt{2}\sin\left(x-\frac{\pi}{4}\right)$$

(D)
$$2\sin\left(x-\frac{\pi}{4}\right)$$

- 5. Four males and four females are to sit around a table. In how many ways can this be done if the males and females alternate?
 - (A) 144
 - (B) 2880
 - (C) 5040
 - (D) 40 320
- 6. The direction (slope) field for a first order differential equation is shown.

Which of the following could be the differential equation represented?

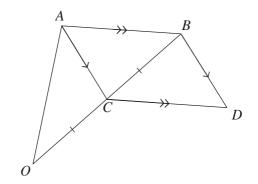
(A)
$$\frac{dy}{dx} = (x+1)^3$$

(B)
$$\frac{dy}{dx} = x(y+1)$$

(C)
$$\frac{dy}{dx} = (x+1)y$$

(D)
$$\frac{dy}{dx} = (x-1)y$$

7. The position vectors of points A and B are \underline{a} and \underline{b} respectively. Point C is the midpoint of OB and point D is such that ABDC is a parallelogram.



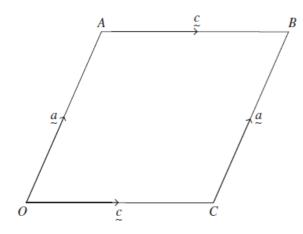
Which of the following is the position vector of *D*?

- (A) $\frac{3}{2}\dot{b} + \dot{a}$
- (B) $\frac{3}{2}\dot{p} \dot{a}$
- (C) $\frac{1}{2}\underline{b} \frac{1}{2}\underline{a}$ (D) $\frac{1}{2}\underline{b} - \underline{a}$

8. What is the value of k such that the function $f(x) = \frac{k}{1+x^2}$, $-1 \le x \le 1$ is a probability density function?

- (A) $k = \frac{\pi}{4}$ (B) $k = \frac{\pi}{2}$ (C) $k = \frac{2}{\pi}$
- (D) $k = \frac{4}{\pi}$
- 9. A curve C has parametric equations $x = \cos^2 t$ and $y = 4\sin^2 t$ for $t \in \mathbb{R}$. What is the Cartesian equation of C?
 - (A) y=1-x for $0 \le x \le 1$
 - (B) y=4-4x for $t\in\mathbb{R}$
 - (C) y = 4 4x for $0 \le x \le 1$
 - (D) y=1-x for $t \in \mathbb{R}$

10. The diagram shows *OABC*, a rhombus in which $\overrightarrow{OA} = \overrightarrow{CB} = a$ and $\overrightarrow{OC} = \overrightarrow{AB} = c$.



To prove that the diagonals of OABC are perpendicular, it is required to show that

(A)
$$(\underline{a} + \underline{c}) \cdot (\underline{a} + \underline{c}) = 0$$

- (B) $(\underline{a}-\underline{c})\cdot(\underline{a}-\underline{c})=0$
- (C) $(\underline{a} \underline{c}) \cdot (\underline{a} + \underline{c}) = 0$
- (D) $\underline{a} \cdot \underline{c} = 0$

Section II

60 marks Attempt Questions 11–14 Allow about 1 hour and 45 minutes for this section

Answer each question in a new writing booklet. Extra writing booklets are available. In Questions 11–14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Start a new writing booklet

- (a) Consider the function $f(x) = x^2 4x + 6$.
 - (i) Explain why the domain of f(x) must be restricted if f(x) is to have an inverse function.

1

- (ii) Given that the domain of f(x) is restricted to $x \le 2$, find an expression for $f^{-1}(x)$. 2
- (iii) Given the restriction in part (a) (ii), state the domain and range of $f^{-1}(x)$. 2
- (iv) The curve y = f(x) ($x \le 2$) and the curve $y = f^{-1}(x)$ intersect at the point *P*. 2

Find the coordinates of *P*.

- (b) Use the substitution $u = 1 + 2\tan x$ to evaluate $\int_0^{\frac{\pi}{4}} \frac{1}{(1 + 2\tan x)^2 \cos^2 x} dx$. 2
- (c) Use *t*-formulae to solve the equation $\cos x \sin x = -1$, where $0 \le x \le 2\pi$. 3

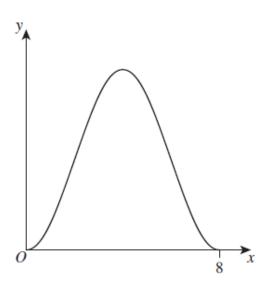
(d) Use the substitution
$$u = 1 - x$$
 to evaluate $\int_{-3}^{0} \frac{x}{\sqrt{1 - x}} dx$ 3

End of Question 11

Question 12 (15 marks) Start a new writing booklet

(a) Evaluate
$$\int_0^{\frac{2}{3}} \frac{1}{\sqrt{4-9x^2}} dx$$
. 3

(b) A proposed plan for a garden is shown in the diagram. The curved boundary of the garden is modelled by the function $f(x) = 6\sin^2\left(\frac{\pi x}{8}\right), \ 0 \le x \le 8$.



(i) Use the identity
$$\sin A \sin B = \frac{1}{2} [\cos(A - B) - \cos(A + B)]$$
 to show that
 $\sin^2 \left(\frac{\pi x}{8}\right) = \frac{1}{2} \left(1 - \cos\frac{\pi x}{4}\right).$

(ii) Use the result from part (a) (i) to find the area *A* of the garden.

2

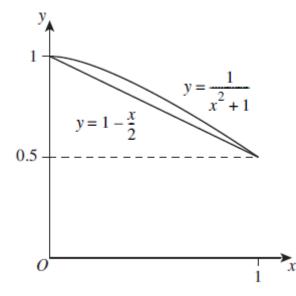
2

Question 12 continues on page 9

Question 12

- (c) The work done *W*, by a constant force \mathbf{F} , in moving a particle through a displacement \underline{s} , is defined by the formula $W = \mathbf{F} \cdot \underline{s}$. A force described by the vector $\mathbf{F} = \begin{pmatrix} 4 \\ -2 \end{pmatrix}$ moves a particle along the line *l* from *P* (-1,2) to *Q* (2,-2) so that $\underline{s} = \overrightarrow{PQ}$.
 - (i) Find <u>s</u> and hence find the value of W.
 - (ii) Hence, verify that W is also given by $W = (\tilde{F} \cdot \hat{s}) |s|$.
 - (iii) Find the vector projection of F onto s.

(d) The diagram shows the graph of $y = \frac{1}{x^2 + 1}$ and the graph of $y = 1 - \frac{x}{2}$ for $0 \le x \le 1$.



- (i) Find the exact volume of the solid of revolution formed when the region bounded by the graph of $y = \frac{1}{x^2 + 1}$, the y-axis and the line $y = \frac{1}{2}$ is rotated 360° about the y-axis.
- (ii) Find the exact volume of the solid of revolution formed when the region bounded by the graph of $y = 1 \frac{x}{2}$, the y-axis and the line $y = \frac{1}{2}$ is rotated 360° about the y-axis.
- (iii) Use the results from parts (c) (i) and (ii) to show that $\ln 2 > \frac{2}{3}$.

1

2

2

1

1

1

3

2

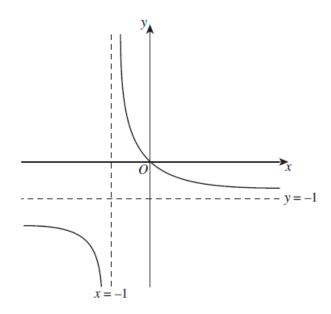
2

Question 13 (15 marks) Start a new writing booklet

(a) Prove by mathematical induction that, for all integers $n \ge 1$,

$$\frac{2}{1\times3} + \frac{2}{2\times4} + \frac{2}{3\times5} + \dots + \frac{2}{n(n+2)} = \frac{3}{2} - \frac{2n+3}{(n+1)(n+2)} \cdot$$

(b) The diagram below is a sketch of the graph of the function $f(x) = \frac{-x}{x+1}$.



- (i) Sketch the graph of y = -f(x), showing all asymptotes and intercepts.
- (ii) Sketch the graph of $y = (f(x))^2$, showing all asymptotes and intercepts.

(iii) Solve the equation
$$(f(x))^2 = f(x)$$
 for **x**. 1

Question 13 continues on page 11

Question 13

(c) The area $A cm^2$ is occupied by a bacterial colony. The colony has its growth modelled by

The logistic equation $\frac{dA}{dt} = \frac{1}{25}A(50 - A)$ where $t \ge 0$ and t is measured in days.

At time t = 0, the area occupied by the bacteria colony is $\frac{1}{2} cm^2$.

(i) Show that
$$\frac{1}{A(50-A)} = \frac{1}{50} \left(\frac{1}{A} + \frac{1}{50-A} \right)$$
. 1

3

1

2

(ii) Using the result from part (c) (i), solve the logistic equation and

hence show that
$$A = \frac{50}{1+99e^{-2t}}$$
.

- (iii) According to this model, what is the limiting area of the bacteria colony?
- (iv) Find the exact time when the rate of change in the area occupied by the bacterial colony is at its maximum.

End of Question 13

(a) At time *t* seconds the length of the side of a cube is *x* cm, the surface area of the cube is $S \ cm^2$, and the volume of the cube is $V \ cm^3$. The surface area of the cube is increasing at a constant rate of $8 \ cm^2 / s$.

(i) Show that
$$\frac{dx}{dt} = \frac{k}{x}$$
 where k is a constant. 2

(ii) Show that
$$\frac{dV}{dt} = 2V^{\frac{1}{3}}$$
.

(iii) Given that V = 8 when t = 0, find the value of t when $V = 16\sqrt{2}$.

(b)

(i) Prove the trigonometric identity
$$\tan 3\theta = \frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta}$$
. 3

2

2

(ii) Use the identity from part (b) (i) to show that the roots of the cubic equation

$$x^{3}-3x^{2}-3x+1=0$$
 are $\tan \frac{\pi}{12}$, $\tan \frac{5\pi}{12}$ and -1 .

(iii) Hence, show that
$$\tan \frac{\pi}{12} = 2 - \sqrt{3}$$
.

(c) The table shows selected values of a one-to-one differentiable function g(x)and its derivative g'(x).

x	-1	0
g(x)	-5	-1
g'(x)	3	$\frac{1}{2}$

Let f(x) be a function such that $f(x) = g^{-1}(x)$. Find the value of f'(-1).

End of paper

BLANK PAGE

Hornsby Girls High School Year 12 Mathematics Extension 1 HSC Trial 2020 Solutions

Solutions	Marker's Comments
Question 1 A If α and $\alpha + 1$ are zeros of $P(x)$, then $P(x) = x^2 - (2\alpha + 1)x + (\alpha^2 + \alpha).$ Equating coefficients gives $b = -(2\alpha + 1)$ and $c = \alpha^2 + \alpha.$	$\frac{52}{69}$ were correct.
Question 2 D $\frac{d}{dx}(\tan^{-1}f(x)) = \frac{f'(x)}{1 + (f(x))^2}$ $f(x) = 2x - 1 \text{ and } f'(x) = 2$ $\frac{d}{dx}(\tan^{-1}(2x - 1)) = \frac{2}{1 + (2x - 1)^2}$ $= \frac{2}{4x^2 - 4x + 2}$ $= \frac{1}{2x^2 - 2x + 1}$	$\frac{54}{69}$ were correct.
Question 3CSince there are 80 students, they could be divided into 10 groups each with 8 students. To ensure that at least one group has 9 students, we need 9 groups.	$\frac{46}{69}$ were correct.
Question 4A $R\sin(x + \alpha) = R\sin x \cos \alpha + R\cos x \sin \alpha$ $\sin x + \cos x = R\sin x \cos \alpha + R\cos x \sin \alpha$ Equating coefficients of $\sin x$ gives $R\cos \alpha = 1$. (1)Equating coefficients of $\cos x$ gives $R\sin \alpha = 1$. (2)Squaring both (1) and (2) and adding gives $R^2 = 2 \Rightarrow R = \sqrt{2}$ (> 0).Substituting into (1) and (2) gives $\cos \alpha = \frac{1}{\sqrt{2}}$ and $\sin \alpha = \frac{1}{\sqrt{2}}$.So $\alpha = \frac{\pi}{4}$ and hence $\sin x + \cos x = \sqrt{2} \sin \left(x + \frac{\pi}{4}\right)$.	$\frac{56}{69}$ were correct.

			S	olution	S			Marker's Comments
Question 5AThe table outlines the possible seating arrangements.						$\frac{55}{69}$ were correct.		
M1	M2	M3	M 4	F1	F2	F3	F4	
1	3	2	1	4	3	2	1	
Therefore $3! \times 4! =$		umber o	of possib	ole seati	ng arrai	ngemen	ts is	
Questio At (0, 0		C		incorre	ct			$\frac{42}{69}$ were correct. Many chose B wrongly.
At (-1,	ил					rect.		
Questio		В						$\frac{57}{69}$ were correct.
$\overrightarrow{OD} = \overrightarrow{O}$ $= \frac{1}{2}$								
$= \frac{1}{2}\overrightarrow{OB} + \overrightarrow{AB}$ $= \frac{1}{2}\overrightarrow{OB} + \overrightarrow{AO} + \overrightarrow{OB}$								
$=\frac{1}{2}\dot{p}-\dot{a}+\dot{p}$								
$=\frac{3}{2}$	b∕n – á							
Questior	n 8	(2					$\frac{46}{69}$ were correct.
	$\int_{-1}^{1} \frac{k}{1+x^2}$							
$k(\tan^{-1}1 - \tan^{-1}(-1)) = 1$								
$k\left(\frac{\pi}{4} + \frac{\pi}{4}\right) = 1$								
$k = \frac{2}{\pi}$								
	π							

Solutions	Marker's Comments
Question 9 C The parametric equations are: $x = \cos^2 t$ (1) $y = 4\sin^2 t$ (2) $\frac{(2)}{4}$ gives $\frac{y}{4} = \sin^2 t$. (3) (1) + (3) and using $\cos^2 t + \sin^2 t = 1$ gives $x + \frac{y}{4} = 1 \Rightarrow 4x + y = 4$. $0 \le \cos^2 t \le 1$ and so $0 \le x \le 1$. Therefore, $y = 4 - 4x$ for $0 \le x \le 1$.	$\frac{41}{69}$ were correct. Many chose B wrongly
Question 10 C The diagonals of <i>OABC</i> are given by \overrightarrow{OB} and \overrightarrow{CA} . To prove they are perpendicular, form $\overrightarrow{CA} \cdot \overrightarrow{OB}$ and show that it equals zero. $\overrightarrow{CA} = \overrightarrow{a} - \overrightarrow{c}$ and $\overrightarrow{OB} = \overrightarrow{a} + \overrightarrow{c}$. Therefore $\overrightarrow{CA} \cdot \overrightarrow{OB} = 0$ if $(\overrightarrow{a} - \overrightarrow{c}) \cdot (\overrightarrow{a} + \overrightarrow{c}) = 0$.	$\frac{58}{69}$ were correct.
Question 11(a)(i) $f(x) = x^2 - 4x + 6$ is a parabola. Excluding the turning point at (2, 2), for each value of $f(x)$ in the range there are two x-values. Geometrically, this corresponds to a horizontal line intersecting the graph twice.If x and y are swapped, each x-value in the domain will have two y-values. Hence the inverse will not be a function.	1 mark Many students mistakenly thought that $f^{-1}(x)$ meant $(f(x))^{-1} = \frac{1}{f(x)}$ then gave a reason of restricting the domain to not include dividing by zero
(ii) Use the completing the square method to express $f(x)$ in turning point form: $f(x) = x^2 - 4x + 6$ $(x \le 2)$ $= (x - 2)^2 + 2$ Swap x and y, then make y the subject. $x = (y - 2)^2 + 2$ $x - 2 = (y - 2)^2$ $y - 2 = -\sqrt{x - 2} (\sqrt{x - 2} \text{ is discarded as } y \le 2)$ $y = -\sqrt{x - 2} + 2$ $f^{-1}(x) = -\sqrt{x - 2} + 2$	1 for interchanging x and y 1 for correct equation

	Solutions	Marker's Comments
Quest	ion 11	2 marks
(a)	(iii) The domain is $x \ge 2$ as $x - 2 \ge 0$.	
I	The range is $y \le 2$ as $-\sqrt{x-2} \le 0$.	
	(iv) The curves $y = f(x)$ and $y = f^{-1}(x)$ have a common intersection with the line $y = x$.	2 marks
I	For example, attempting to solve $f(x) = x$ for x:	
I		
I	$x^2 - 4x + 6 = x$	
	$x^2 - 5x + 6 = 0$	
	x = 2, 3	
	When $x = 2$, $y = 2$ and so $(2, 2)$ lies on the line $y = x$.	
	When $x = 3$, $y = 1$ and so $(3, 1)$ does not lie on the line	
	y = x.	
	Therefore the coordinates of P are $(2, 2)$.	
(b)	Let $u = 1 + 2\tan x$.	Generally well done. Some careless miskes.
l	$\frac{du}{dx} = 2\sec^2 x = \frac{2}{\cos^2 x} \Longrightarrow dx = \frac{\cos^2 x}{2} du$	
	When $x = 0$, $u = 1$ and when $x = \frac{\pi}{4}$, $u = 3$.	
l	$\int_{0}^{\frac{\pi}{4}} \frac{1}{\left(1+2\tan x\right)^{2}\cos^{2}x} dx = \int_{1}^{3} \frac{1}{2u^{2}} du$	
	$= -\left[\frac{1}{2u}\right]_{1}^{3}$	
	$= -\left(\frac{1}{6} - \frac{1}{2}\right)$	
	$=\frac{1}{3}$	
(c)		Most students used t-formula and find t correctly.
	substitute $t = \tan \frac{x}{2}$,	
I	$\frac{1-t^2}{1+t^2} - \frac{2t}{1+t^2} = -1$	Some students didn't check the domain and find the correct number
I	$ \frac{1+t^2}{1-t^2-2t} = -1-t^2 $	of solutions in the domain.
I	1 - t - 2t = -1 - t $2t = 2$	Some forget to check the solution of
I	t = 1	Some forgot to check the solution of π .
	$\tan\frac{x}{2} = 1, 0 \le x \le 2\pi$	
1	$\frac{x}{2} = \frac{\pi}{4}, 0 \le \frac{x}{2} \le \pi$	
	$x = \frac{\pi}{2}$	
	Also when $x = \pi$,	
	$\cos x - \sin x = -1 - 0 = -1$	
	$\therefore x = \frac{\pi}{2}, \ \pi$	

Solutions	Marker's Comments
Question 11	Generally well done.
Question 11 (d) u = 1 - x $\frac{du}{dx} = -1$.: $dx = -du$ when $x = -3, u = 4$ when $x = 0, u = 1$ $\int_{-3}^{0} \frac{x}{\sqrt{1 - x}} dx = \int_{1}^{4} \frac{1 - u}{\sqrt{u}} (-du)$ $= \int_{1}^{4} u^{\frac{-1}{2}} - u^{\frac{1}{2}} du$ $= \left[2u^{\frac{1}{2}} - \frac{2}{3}u^{\frac{3}{2}} \right]_{1}^{4}$ $= \left[4 - \frac{16}{3} - \left(2 - \frac{2}{3} \right) \right]_{1}^{4}$ $= -\frac{4}{3} - \frac{4}{3}$	Generally well done. Some careless mistakes.
$= -\frac{8}{3}$ Question 12 (a) $F(x) = \int_{0}^{\frac{2}{3}} \frac{1}{\sqrt{4 - 9x^{2}}} dx$ $= \frac{1}{3} \left[\sin^{-1} \left(\frac{3}{2} x \right) \right]_{0}^{\frac{2}{3}}$ $= \frac{1}{3} \left[\sin^{-1} 1 - \sin^{-1} 0 \right]$ $= \frac{1}{3} \times \frac{\pi}{2}$ $= \frac{\pi}{6}$ Or	1 for recognising and manipulating to a form which can be integrated 1 for correct integration 1 for substitution and correct evaluation

$F(x) = \int_0^{\frac{2}{3}} \frac{1}{\sqrt{4 - 9x^2}} dx$	
$=\int_{0}^{\frac{2}{3}}\frac{1}{\sqrt{9(\frac{4}{9}-x^{2})}}dx$	
$=\int_{0}^{\frac{2}{3}}\frac{1}{3\sqrt{(\frac{4}{9}-x^{2})}}dx$	
$=\frac{1}{3}\left[\sin^{-1}\left(\frac{x}{\frac{2}{3}}\right)\right]_{0}^{\frac{2}{3}}$	
$=\frac{1}{3}\left[\sin^{-1}\left(\frac{3}{2}x\right)\right]_{0}^{2}$	
$=\frac{1}{3}\left[\sin^{-1}1 - \sin^{-1}0\right]$	
$=\frac{1}{3}\times\frac{\pi}{2}$	
$=\frac{\pi}{6}$	
(b) (i) Using $\sin A \sin B = \frac{1}{2} [\cos(A - B) - \cos(A + B)]$ with	
$A = B = \frac{\pi x}{8}$ gives:	
LHS = $\sin\frac{\pi x}{8}\sin\frac{\pi x}{8}$	
$=\sin^2\frac{\pi x}{8}$	
$\mathbf{RHS} = \frac{1}{2} \left[\cos\left(\frac{\pi x}{8} - \frac{\pi x}{8}\right) - \cos\left(\frac{\pi x}{8} + \frac{\pi x}{8}\right) \right]$	1 for correct rearrangement
$=\frac{1}{2}\left(\cos 0 - \cos \frac{\pi x}{4}\right)$	1 for evaluation and simplifying
$=\frac{1}{2}\left(1-\cos\frac{\pi x}{4}\right)$	Students need to show all
So $\sin^2\left(\frac{\pi x}{8}\right) = \frac{1}{2}\left(1 - \cos\frac{\pi x}{4}\right).$	working in show that questions eg cos0 should be included in the working here
Solutions	Marker's Comments
Question 12 (b) (ii) $A = 6 \int_0^8 \sin^2\left(\frac{\pi x}{8}\right) dx$	Many students missed the 6
$=3\int_0^8 1 - \cos\frac{\pi x}{4} dx$	1 for rearrangement and integration
$= 3 \left[x - \frac{4}{\pi} \sin \frac{\pi x}{4} \right]_0^8$	
$= 3\left(8 - \frac{4}{\pi}\sin 2\pi - (0 - \sin 0)\right)$	
= 3(8 - 0)	1 for substitution and correct evaluation
$= 24 unit^2$	

(c) (i) Substituting $W = F \cdot g$ giv $W = F \cdot g$ $= \begin{pmatrix} 4 \\ -2 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ -2 \end{pmatrix}$		Part c was done well by most students 1
Substituting $W = (\underline{F} \cdot \hat{\underline{s}})$	for in the direction of \overrightarrow{PQ} is $\hat{s} = \frac{1}{5} \begin{pmatrix} 3 \\ -4 \end{pmatrix}$. If $F = \begin{pmatrix} 4 \\ -2 \end{pmatrix}$, $\hat{s} = \frac{1}{5} \begin{pmatrix} 3 \\ -4 \end{pmatrix}$ and $ s = 5$ into s gives: $1 \cdot \frac{1}{5} \begin{pmatrix} 3 \\ -4 \end{pmatrix} = 5$	1
$\left(\frac{\underline{F} \cdot \underline{s}}{\underline{s} \cdot \underline{s}}\right) \underline{s}.$ Substitutin $\left(\frac{\underline{F} \cdot \underline{s}}{\underline{s} \cdot \underline{s}}\right) \underline{s} \mathbf{g}$ $\left(\frac{\underline{F} \cdot \underline{s}}{\underline{s} \cdot \underline{s}}\right) \underline{s} =$ $=$	$\frac{20}{25} \begin{pmatrix} 3 \\ -4 \end{pmatrix}$ $\frac{4}{5} \begin{pmatrix} 3 \\ -4 \end{pmatrix}$ $\begin{pmatrix} 2.4 \\ -3.2 \end{pmatrix}$ ely, the component of \underline{F} in the direction of	1 Some students had a scalar answer instead of a vector
	Solutions	Marker's Comments
Question 12 (d) (i) Rearranging y: of y gives $x^2 =$ $V = \pi \int_{\frac{1}{2}}^{1} (\frac{1}{y} - 1)$ $= \pi [\ln y - y]$ $= \pi (\ln 1 - 1)$ $= \pi (\ln 2 - \frac{1}{2})$	$\int dy = \int \frac{1}{2} -\left(\ln\frac{1}{2} - \frac{1}{2}\right)$	When finding a volume about the y axis we need to use the form $V = \pi \int x^2 dy$ not $V = \pi \int y^2 dx$ Some students had trouble finding the correct expression for x^2 1 for correct integral statement 1 for correct integral statement and evaluation

(ii) Rearranging $y = 1 - \frac{x}{2}$ to express x in terms of y gives	
x = 2(1 - y).	
$V = \pi \int_{\frac{1}{2}}^{1} (4(1-y)^2) dy$	Similar problems as part i
$= -\frac{4\pi}{3} \left[(1-y)^3 \right]_{\frac{1}{2}}^{1}$	1 for correct integral statement
$=-\frac{4\pi}{3}\left(0-\frac{1}{8}\right)$	1 for correct integration and evaluation
$=\frac{\pi}{6}$	
Alternatively:	
The solid formed is a cone of radius 1 and height $\frac{1}{2}$.	
Substituting these values into $V = \frac{1}{3}\pi r^2 h$ gives:	No-one used this approach
$V = \frac{1}{3} \times \pi \times 1^2 \times \frac{1}{2}$	
$=\frac{\pi}{6}$	
The volume of the solid under the curve $y = \frac{1}{x^2 + 1}$ is greater than	
the volume of the solid under the curve $y = 1 - \frac{x}{2}$, $\therefore V(i) > V(ii)$	
(iii) From the diagram, it can be reasoned that	1
$\pi\left(\ln 2 - \frac{1}{2}\right) > \frac{\pi}{6}.$	1
So $\ln 2 - \frac{1}{2} > \frac{1}{6} \Longrightarrow \ln 2 > \frac{2}{3}$.	

Solutions	Marker's Comments
Question 13	Most students followed the proving
(a) Consider $n = 1$.	steps well and wrote the statement correctly.
LHS = $\frac{2}{1 \times 3} = \frac{2}{3}$ and RHS = $\frac{3}{2} - \frac{2(1) + 3}{(1 + 1)(1 + 2)} = \frac{4}{6} = \frac{2}{3} = LHS.$	Some made mistake in the algebra and end up "fudging" the result.
$\operatorname{KHS} = \frac{1}{2} - \frac{1}{(1+1)(1+2)} = \frac{1}{6} - \frac{1}{3} = \operatorname{LHS}.$	
The statement is true when $n = 1$.	
Suppose true for $n = k$.	
So $\frac{2}{1\times3} + \frac{2}{2\times4} + \frac{2}{3\times5} + \dots + \frac{2}{k(k+2)} = \frac{3}{2} - \frac{2k+3}{(k+1)(k+2)}$.	
Show it is true for $n = k + 1$; that is, $\frac{2}{1 \times 3} + \frac{2}{2 \times 4} + \frac{2}{3 \times 5} + \dots + \frac{2}{k(k+2)} + \frac{2}{(k+1)(k+3)} =$	
$\frac{3}{2} - \frac{2(k+1)+3}{((k+1)+1)((k+1)+2)}$	
LHS = $\frac{2}{1 \times 3} + \frac{2}{2 \times 4} + \frac{2}{3 \times 5} + \dots + \frac{2}{k(k+2)} + \frac{2}{(k+1)(k+3)}$	
$=\frac{3}{2} - \frac{2k+3}{(k+1)(k+2)} + \frac{2}{(k+1)(k+3)}$ $=\frac{3}{2} - \frac{(2k+3)(k+3) - 2(k+2)}{(k+1)(k+2)(k+3)}$	
$=\frac{3}{2} - \frac{2k^2 + 7k + 5}{(k+1)(k+2)(k+3)}$	
$=\frac{3}{2} - \frac{(2k+5)(k+1)}{(k+1)(k+2)(k+3)}$	
$=\frac{3}{2} - \frac{2k+5}{(k+2)(k+3)}$	
$=\frac{3}{2} - \frac{2(k+1)+3}{((k+1)+1)((k+1)+2)}$	
= RHS	
If true for $n = k$, then true for $n = k + 1$.	
Hence, by mathematical induction, true for $n \ge 1$.	
(b) (i) y	Most students were able to draw the correct asymptotes and shape of the curve.
y = 1 $x = -1$	
x = -1	

Solutions	Marker's Comments
Question 13 (b) (ii)	Some students didn't recognise that this function is positive for all x. Some didn't find the correct asymptotes.
y = 1	
(iii) $(f(x))^2 = f(x) \Rightarrow f(x)(f(x) - 1) = 0$	Some students missed the solution $x = 0$.
So $f(x) = 1$ or $f(x) = 0$. $-\frac{x}{x+1} = 1 \Rightarrow x = -\frac{1}{2}$	Some students include the solution $x = -1$ which is not in the domain.
Hence $x = -\frac{1}{2}$ or $x = 0$.	
OR The graphs of $y = f(x)$ and $y = (f(x))^2$ intersect at O, where $x = 0$.	
The graphs of $y = f(x)$ and $y = (f(x))^2$ intersect on the line $y = 1$, where $x = -\frac{1}{2}$.	
(c) (i) Start with the RHS and show that it equals the LHS.	Mostly well done.
RHS = $\frac{1}{50} \left(\frac{(50 - A) + A}{A(50 - A)} \right)$	
$=\frac{1}{A(50-A)}$	
= LHS	

	Solutions	Marker's Comments
Question 13 (c)		Generally well done.
(ii)	This is a differential equation of the form $\frac{dA}{dt} = g(A)$.	Some mistakes solving the DE and finding the constant.
	Attempt to separate variables and integrate both sides.	
	$\int 1dt = \int \frac{25}{A(50-A)}dA$	
	$t = \frac{1}{2} \int \left(\frac{1}{A} + \frac{1}{50 - A}\right) dA$ (using the part (i) result)	
	$=\frac{1}{2}(\ln A - \ln 50 - A) + c$	
	$=\frac{1}{2}\ln\left \frac{A}{50-A}\right +c$	
	Rearranging gives $A_0 e^{2t} = \frac{A}{50 - A}$ where $A_0 = e^{-2c}$	
	and hence $A_0 > 0$.	
	When $t = 0$, $A = \frac{1}{2}$ and so $A_0 = \frac{1}{99}$.	
	<i>Note: There are various possible ways to find the value of the constant.</i>	
	$e^{2t} = \frac{99A}{50 - A}$	
	$99Ae^{-2t} = 50 - A$	
	$A(1+99e^{-2t}) = 50$	
	So $A = \frac{50}{1 + 99e^{-2t}}$.	
		Generally well done.
(i	ii) As $t \to \infty$, $1 + 99e^{-2t} \to 1$ and so $A \to \frac{50}{1} = 50$.	
	The limiting area of the bacteria colony is 50 cm^2 .	

	Solutions	Marker's Comments
		Generally well done.
(c) (iv)	SolutionsThe graph of $\frac{dA}{dt}$ versus A (inverted parabola) has amaximum at $A = 25$.It requires us to find the value of t such that $25 = \frac{50}{1+99e^{-2t}}$. $25(1+99e^{-2t}) = 50$ $1+99e^{-2t} = 2$ $e^{-2t} = \frac{1}{99}$ $e^{-2t} = \frac{1}{99}$ $t = \frac{1}{2} \ln 99$ (days)The rate of change of the area is at its maximumat $t = \frac{1}{2} \ln 99$ (days).Note: There are other valid but more time-consumingmethods of determining this solution.	•
	Method 1: Finding $\frac{d^2A}{dt^2} = \frac{1}{25^2}A(50 - A)(50 - 2A)$, determining that $\frac{dA}{dt}$ is a maximum when $A = 25$ and then solving	
	for t as above.	
	Method 2:	
	Determining the value of t when the (non-stationary)	
	point of inflection occurs by finding $\frac{d^2A}{dt^2}$ in terms of t	
	and then finding the value of t such that $\frac{d^2A}{dt^2} = 0$.	
	ur	

Solutions	Marker's Comments	
Question 14	Some careless mistake of $S = x^2$.	
(a) (i) Surface area of a cube with a side length of <i>x</i> is $6x^2$ $S = 6x^2$ $\frac{dS}{dx} = 12x$ Given $\frac{dS}{dt} = 8$	"Show" that $\frac{dx}{dt} = \frac{k}{x}$: should express in that format.	
$\frac{dx}{dt} = \frac{dS}{dt} \div \frac{dS}{dx} = \frac{8}{12x}$ $= \frac{\frac{2}{3}}{\frac{3}{x}} \text{ with } k = \frac{2}{3}$		
(ii) $V = x^{3} \text{ (volume of a cube with side length } x\text{)}$ $\frac{dV}{dx} = 3x^{2}$ $\frac{dV}{dt} = \frac{dV}{dx} \times \frac{dx}{dt}$ $= 3x^{2} \times \frac{2}{3x} = 2x$ $x = \frac{1}{2}\frac{dV}{dt}$ $x = V^{\frac{1}{3}}$ $\frac{1}{2}\frac{dV}{dt} = V^{\frac{1}{3}}$ $\frac{dV}{dt} = 2V^{\frac{1}{3}}$	Many had problem in obtaining the required expression.	
(iii) $\frac{dV}{dt} = 2V^{\frac{1}{3}}$ $V^{-\frac{1}{3}}dV = 2dt$ $\int V^{-\frac{1}{3}}dV = \int 2 dt$ $\frac{3}{2}V^{\frac{2}{3}} = 2t + C$ Given that $V = 8$ when $t = 0$ $\frac{3}{2}8^{\frac{2}{3}} = 2 \times 0 + C \text{ or } C = 6$ $\frac{3}{2}V^{\frac{2}{3}} = 2t + 6$ Find t when $V = 16\sqrt{2}$ $\frac{3}{2}(16\sqrt{2})^{\frac{2}{3}} = 2t + 6$ $12 = 2t + 6$ $t = 3$	Many had problem with evaluating $(16\sqrt{2})^{\frac{2}{3}}$.	

Solutions	Marker's Comments
Question 14 (b)	Generally done well. Students need to know the formula for $\tan 2\theta$.
(i) Use of $\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$ with $A = B = \theta$.	A few did not complete their working to the required form.
$\tan 2\theta = \frac{2\tan\theta}{1-\tan^2\theta}$	
Use of $\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$ with $A = 2\theta$ and	
$B = \theta$.	
$\tan 3\theta = \frac{\tan 2\theta + \tan \theta}{1 - \tan 2\theta \tan \theta}$	
$= \frac{\frac{2\tan\theta}{1-\tan^2\theta} + \tan\theta}{1-\frac{2\tan\theta}{1-\tan^2\theta}\tan\theta}$	
$= \frac{\frac{2\tan\theta + \tan\theta(1 - \tan^2\theta)}{1 - \tan^2\theta}}{\frac{(1 - \tan^2\theta) - 2\tan^2\theta}{1 - \tan^2\theta}}$	
$=\frac{3\tan\theta-\tan^3\theta}{1-3\tan^2\theta}$	
(ii) Consider $x^3 - 3x^2 - 3x + 1 = 0$ with $x = \tan \theta$.	Many did not relate the similarity in structure of $x^3 - 3x^2 - 3x + 1 = 0$ to
$\tan^3\theta - 3\tan^2\theta - 3\tan\theta + 1 = 0$	$\frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta}.$
$\frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta} = 1$	Many did not connect that
So $\tan 3\theta = 1$ and finding the roots of $\tan 3\theta = 1$ corresponds to finding the roots of the cubic equation	$x^3 - 3x^2 - 3x + 1 = 0$ has three roots, neither did they realise that $\tan 3\theta$ indicates there are 3 roots to the solution.
where $x = \tan \theta$.	
$3\theta = \tan^{-1}1 + k\pi$ where k is an integer $\theta = \frac{\pi}{12} + \frac{k\pi}{3}$	
12 5	
$=\frac{\pi}{12},\frac{5\pi}{12},\frac{9\pi}{12}$	

	Solutions	Marker's Comments
Question 14		Students have not stated succinctly for
(b)		the rejection of $2 + \sqrt{3}$ as a solution
(iii)		for $\tan \frac{\pi}{12}$.
	$\tan \frac{3\pi}{4} = -1$ and so one factor of the cube is $x + 1$.	
	So $x^3 - 3x^2 - 3x + 1 = (x + 1)(x^2 - 4x + 1).$	
	So $\tan \frac{\pi}{12}$ and $\tan \frac{5\pi}{12}$ are the roots of $x^2 - 4x + 1 = 0$.	
	Solving the quadratic equation $x^2 - 4x + 1 = 0$ for x	
	gives $x = 2 \pm \sqrt{3}$.	
	Since $\tan \frac{\pi}{12} < \tan \frac{5\pi}{12}$, $\tan \frac{\pi}{12}$ is the smaller root and	
	$x=2-\sqrt{3}.$	
(c) Fro	m the table, $f(x) = g^{-1}(x)$ and so $f(-1) = g^{-1}(-1) = 0$.	This question is very poorly executed. It is a pity the lack of using graph as a tool to solve this.
$f'(\cdot$	$(-1) = \frac{1}{g'(f(-1))}$	
	$=\frac{1}{g'(0)}$	
	$=\frac{1}{\frac{1}{2}}$	
	$\overline{2}$	
	= 2	

End of Paper